Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Comput Biol Chem ; 102: 107810, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2165190

ABSTRACT

Intermolecular interaction between key residue N501 of the epitope on SARS-CoV-2 RBD and screening antibody B38 was studied using the QM/MM and QM approach. The QM/MM optimized geometry shows that angle X-H---Y is 165° for O-H---O between mAb light chain S30 and RBD N501. High level MP2 calculations indicated the interaction between RBD N501 and S30 of B38 Fab light chain provide a relatively strong attractive force of - 3.32 kcal/mol, whereas the hydrogen bond between RBD Q498 and S30 was quantified as 0.10 kcal/mol. The decrease in ESP partial charge on hydrogen atom of hydroxyl group on S30 drops from 0.38 a.u. to 0.31 a.u., exhibiting the sharing of 0.07 a.u. from the lone pair electron oxygen of N501 due to hydrogen bond formation. The NBO occupancy of hydrogen atom also decreases from 25.79 % to 22.93 % in the hydroxyl H-O NBO bond of S30. However, the minor change of NBO hybridization of hydroxyl oxygen of S30 from sp3.00 to sp3.05 implies the rigidity of hydrogen bond tetrahedral geometry in the relative dynamic protein complex. The O-H---O angle is 165° which is close but not exactly linear. The structural requirement for sp3 hybridization of oxygen for hydroxyl group on S30 and dimension of protein likely prevent O-H---O from adopting linear geometry. The hydrogen bond strengths were also calculated using a variety of DFT methods, and the result of - 3.33 kcal/mol from the M06L method is the closest to that of the MP2 calculation. Results of this work may aid in the COVID-19 vaccine and drug screening.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , Oxygen , Hydrogen , Protein Binding
2.
Chem Catal ; 2(5): 1084-1099, 2022 May 19.
Article in English | MEDLINE | ID: covidwho-1797085

ABSTRACT

We combine molecular dynamics, statistical mechanics, and hybrid quantum mechanics/molecular mechanics simulations to describe mechanistically the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp). Our study analyzes the binding mode of both natural triphosphate substrates as well as remdesivir triphosphate (the active form of drug), which is bound preferentially over ATP by RdRp while being poorly recognized by human RNA polymerase II (RNA Pol II). A comparison of incorporation rates between natural and antiviral nucleotides shows that remdesivir is incorporated more slowly into the nascent RNA compared with ATP, leading to an RNA duplex that is structurally very similar to an unmodified one, arguing against the hypothesis that remdesivir is a competitive inhibitor of ATP. We characterize the entire mechanism of reaction, finding that viral RdRp is highly processive and displays a higher catalytic rate of incorporation than human RNA Pol II. Overall, our study provides the first detailed explanation of the replication mechanism of RdRp.

3.
Int J Mol Sci ; 23(1)2021 Dec 28.
Article in English | MEDLINE | ID: covidwho-1580696

ABSTRACT

The inhibition of key enzymes that may contain the viral replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have assumed central importance in drug discovery projects. Nonstructural proteins (nsps) are essential for RNA capping and coronavirus replication since it protects the virus from host innate immune restriction. In particular, nonstructural protein 16 (nsp16) in complex with nsp10 is a Cap-0 binding enzyme. The heterodimer formed by nsp16-nsp10 methylates the 5'-end of virally encoded mRNAs to mimic cellular mRNAs and thus it is one of the enzymes that is a potential target for antiviral therapy. In this study, we have evaluated the mechanism of the 2'-O methylation of the viral mRNA cap using hybrid quantum mechanics/molecular mechanics (QM/MM) approach. It was found that the calculated free energy barriers obtained at M062X/6-31+G(d,p) is in agreement with experimental observations. Overall, we provide a detailed molecular analysis of the catalytic mechanism involving the 2'-O methylation of the viral mRNA cap and, as expected, the results demonstrate that the TS stabilization is critical for the catalysis.


Subject(s)
Methyltransferases/metabolism , RNA Caps/chemistry , RNA Caps/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Biocatalysis , Biomechanical Phenomena , Methylation , Methyltransferases/chemistry , Molecular Dynamics Simulation , Quantum Theory , RNA Processing, Post-Transcriptional , Viral Nonstructural Proteins/chemistry , Viral Regulatory and Accessory Proteins/chemistry
4.
Drug Discov Today ; 27(5): 1411-1419, 2022 05.
Article in English | MEDLINE | ID: covidwho-1587949

ABSTRACT

The rapidly evolving Coronavirus 2019 (COVID-19) pandemic has led to millions of deaths around the world, highlighting the pressing need to develop effective antiviral pharmaceuticals. Recent efforts with computer-aided rational drug discovery have allowed detailed examination of drug-macromolecule interactions primarily by molecular mechanics (MM) techniques. Less widely applied in COVID-19 drug modeling is density functional theory (DFT), a quantum mechanics (QM) method that enables electronic structure calculations and elucidations of reaction mechanisms. Here, we review recent advances in applying DFT in molecular modeling studies of COVID-19 pharmaceuticals. We start by providing an overview of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs and targets, followed by a brief introduction to DFT. We then provide a discussion of different approaches by which DFT has been applied. Finally, we discuss essential factors to consider when incorporating DFT in future drug modeling research.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Density Functional Theory , Drug Design , Humans , Molecular Docking Simulation , Pharmaceutical Preparations
5.
Front Mol Biosci ; 8: 633181, 2021.
Article in English | MEDLINE | ID: covidwho-1370990

ABSTRACT

Recently, molecular covalent docking has been extensively developed to design new classes of inhibitors that form chemical bonds with their biological targets. This strategy for the design of such inhibitors, in particular boron-based inhibitors, holds great promise for the vast family of ß-lactamases produced, inter alia, by Gram-negative antibiotic-resistant bacteria. However, the description of covalent docking processes requires a quantum-mechanical approach, and so far, only a few studies of this type have been presented. This study accurately describes the covalent docking process between two model inhibitors - representing two large families of inhibitors based on boronic-acid and bicyclic boronate scaffolds, and three ß-lactamases which belong to the A, C, and D classes. Molecular fragments containing boron can be converted from a neutral, trigonal, planar state with sp2 hybridization to the anionic, tetrahedral sp3 state in a process sometimes referred to as morphing. This study applies multi-scale modeling methods, in particular, the hybrid QM/MM approach which has predictive power reaching well beyond conventional molecular modeling. Time-dependent QM/MM simulations indicated several structural changes and geometric preferences, ultimately leading to covalent docking processes. With current computing technologies, this approach is not computationally expensive, can be used in standard molecular modeling and molecular design works, and can effectively support experimental research which should allow for a detailed understanding of complex processes important to molecular medicine. In particular, it can support the rational design of covalent boron-based inhibitors for ß-lactamases as well as for many other enzyme systems of clinical relevance, including SARS-CoV-2 proteins.

6.
Brief Bioinform ; 22(2): 1361-1377, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1352114

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a dreaded pandemic in lack of specific therapeutic agent. SARS-CoV-2 Mpro, an essential factor in viral pathogenesis, is recognized as a prospective therapeutic target in drug discovery against SARS-CoV-2. To tackle this pandemic, Food and Drug Administration-approved drugs are being screened against SARS-CoV-2 Mpro via in silico and in vitro methods to detect the best conceivable drug candidates. However, identification of natural compounds with anti-SARS-CoV-2 Mpro potential have been recommended as rapid and effective alternative for anti-SARS-CoV-2 therapeutic development. Thereof, a total of 653 natural compounds were identified against SARS-CoV-2 Mpro from NP-lib database at MTi-OpenScreen webserver using virtual screening approach. Subsequently, top four potential compounds, i.e. 2,3-Dihydroamentoflavone (ZINC000043552589), Podocarpusflavon-B (ZINC000003594862), Rutin (ZINC000003947429) and Quercimeritrin 6"-O-L-arabinopyranoside (ZINC000070691536), and co-crystallized N3 inhibitor as reference ligand were considered for stringent molecular docking after geometry optimization by DFT method. Each compound exhibited substantial docking energy >-12 kcal/mol and molecular contacts with essential residues, including catalytic dyad (His41 and Cys145) and substrate binding residues, in the active pocket of SARS-CoV-2 Mpro against N3 inhibitor. The screened compounds were further scrutinized via absorption, distribution, metabolism, and excretion - toxicity (ADMET), quantum chemical calculations, combinatorial molecular simulations and hybrid QM/MM approaches. Convincingly, collected results support the potent compounds for druglikeness and strong binding affinity with the catalytic pocket of SARS-CoV-2 Mpro. Hence, selected compounds are advocated as potential inhibitors of SARS-CoV-2 Mpro and can be utilized in drug development against SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus M Proteins/drug effects , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Humans , Molecular Dynamics Simulation , Quantum Theory
7.
Mol Divers ; 26(3): 1373-1381, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1281316

ABSTRACT

SARS-CoV-2 Mpro, also known as the main protease or 3C-like protease, is a key enzyme involved in the replication process of the virus that is causing the COVID-19 pandemic. It is also the most promising antiviral drug target targeting SARS-CoV-2 virus. In this work, the catalytic mechanism of Mpro was studied using the full model of the enzyme and a computational QM/MM methodology with a 69/72-atoms QM region treated at DLPNO-CCSD(T)/CBS//B3LYP/6-31G(d,p):AMBER level and including the catalytic important oxyanion-hole residues. The transition state of each step was fully characterized and described together with the related reactants and products. The rate-limiting step of the catalytic process is the hydrolysis of the thioester-enzyme adduct, and the calculated barrier closely agrees with the available kinetic data. The calculated Gibbs free energy profile, together with the full atomistic detail of the structures involved in catalysis, can now serve as valuable models for the rational drug design of transition state analogs as new inhibitors targeting the SARS-CoV-2 virus.


Subject(s)
COVID-19 Drug Treatment , Pandemics , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Catalysis , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Humans , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2 , Viral Nonstructural Proteins
8.
Molecules ; 25(24)2020 Dec 11.
Article in English | MEDLINE | ID: covidwho-979528

ABSTRACT

We present a detailed computational study of the UV/Vis spectra of four relevant flavonoids in aqueous solution, namely luteolin, kaempferol, quercetin, and myricetin. The absorption spectra are simulated by exploiting a fully polarizable quantum mechanical (QM)/molecular mechanics (MM) model, based on the fluctuating charge (FQ) force field. Such a model is coupled with configurational sampling obtained by performing classical molecular dynamics (MD) simulations. The calculated QM/FQ spectra are compared with the experiments. We show that an accurate reproduction of the UV/Vis spectra of the selected flavonoids can be obtained by appropriately taking into account the role of configurational sampling, polarization, and hydrogen bonding interactions.


Subject(s)
Flavonoids/chemistry , Water/chemistry , Computer Simulation , Hydrogen Bonding , Molecular Conformation , Molecular Dynamics Simulation , Normal Distribution , Physical Phenomena , Quantum Theory , Spectrophotometry, Ultraviolet , Static Electricity , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL